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Abstract

The dynamic compressive strength of unidirectional fiber composites in the form of fiber microbuckling was

investigated and modeled. Both strain rate and shear stress effects on the compressive strength were considered. The

present model was developed from extending Rosen�s fiber buckling model in conjunction with a viscoplasticity model

to describe the inelastic and rate dependent behavior of the composite. Off-axis S2/8552 glass/epoxy composite speci-

mens were tested at various strain rates to provide the experimental data with the presence of shear stresses. For strain

rates below 1 s�1, compression tests were conducted on an MTS loading machine, while higher strain rate tests were

performed using a split Hopkinson pressure bar (SHPB). Comparison of model predictions with experimental data

showed that the dynamic microbuckling model was quite accurate in predicting compressive failure of unidirectional

composites for strain rates up to 900 s�1. From the model predictions and experimental data, it was found that the

presence of shear stress can significantly lower the compressive strength of composites. Comparison of the present

microbuckling model and the kink band model was made.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

For most materials, the compressive strength is much greater than the tensile strength. Fiber-reinforced
composites are among the very few materials that exhibit a greater tensile strength than compressive

strength. This behavior results from that the compressive failure mechanism in fiber composites is in the

form of fiber microbuckling. Static compressive strengths of unidirectional composites have been studied by

many researchers in past few decades. Two main models have been developed for predicting compressive

strengths of fiber composites, namely, the microbuckling model and the kink band model. In the micro-

buckling model, the compressive failure was assumed to be triggered by the local instability of fibers

embedded in the matrix as depicted in Fig. 1. Rosen (1965) was the first researcher to propose a fiber
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Fig. 1. Shear mode microbuckling model.
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microbuckling model based on perfectly aligned elastic fibers and elastic matrices. However, the predicted

compressive strength according to this model was much higher than the experimental data. Sun and Jun
(1994) followed Rosen�s concept and developed a microbuckling model that included the effects of fiber

misalignments and the nonlinear behavior of the matrix with an improved accuracy in prediction.

On the other hand, the kink band model (see Fig. 2) was developed with the assumption that com-

pressive failure of the composite results from yielding of shear deformation in the composite in connection

with initially misaligned fibers. Argon (1972) investigated the fiber misalignment effect on compressive

failure and suggested that, once the shear stress in the region of fiber misalignments reached the composite

shear yield stress, compressive failure would occur. In his model, the composite material was assumed to be

rigid plastic. Budiansky (1983) and Budiansky and Fleck (1993) extended Argon�s model to include more
general elastic–plastic behavior of composites.

In either the microbuckling model or the kink band model, the compressive strength of a fiber composite

is governed by the matrix stiffness property. Thus, it is reasonable to expect a pronounced strain rate effect.

Many researchers have investigated the dynamic compressive behavior in composites. Kumar et al. (1986)

performed dynamic compressive tests on glass/epoxy composites for various fiber orientations. The dy-

namic compressive strength for the 0� specimen was found to have increased nearly 100% compared with

the static value, and the failure was dominated by fiber splitting. For off-axis specimens with fiber orien-

tations larger than 10�, experimental data indicated that matrix shearing was the main failure mode.
El-Habak (1993) studied the strain rate effect on the compressive strength of unidirectional glass/epoxy

composites. He found that, in contrast to the results by Kumar et al. (1986), the compressive strength was

only slightly increased with strain rate. Lankford (1991) tested a carbon fiber-reinforced thermoplastic

matrix composite (AS4/PEEK) in compression at strain rates ranging from 10�5 to 5000 s�1. In order to

prevent fiber brooming, steel ring fittings were placed at both ends of the cylindrical specimen. The test

results showed that, for strain rates less than 1000 s�1, compressive strength increased somewhat as strain

rate increased. However, for strain rates on the order of 103–104 s�1, the compressive strength sharply

increased. For strain rates less than 1000 s�1, kinking was found to be the dominant failure mode; while, for
strain rates in excess of 1000 s�1, the dominant failure mechanism could not be determined because the

specimen was destroyed in the high strain experiment. Yuan et al. (1999) studied the influence of strain rate

on compressive strength of glass and carbon fiber-reinforced unidirectional composites with different fiber

volume fractions. It was found that kinking followed by longitudinal splitting was the main failure

mechanism, and that compressive strength was dependent on strain rate.

So far, theoretical models for predicting compressive strengths of fiber composites at high strain rates are

still lacking. The purpose of this study was to develop a theoretical model that is capable of predicting
β

Fig. 2. Kink band model.
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compressive strengths of polymeric fiber composites under both static and dynamic loads. The micro-

buckling model was established with off-axis compression tests together with the aid of a viscoplasticity

model for composites. Off-axis specimens with small off-axis angles were tested using a split Hopkinson bar

to verify the model predictions at high strain rates.
2. Microbuckling model

Rosen (1965) employed a 2-D elasticity model to estimate the buckling condition of fibers in a com-

posite. The buckling stress of the dominant shear mode as shown in Fig. 1 is given by
r11c ¼
Gm

1� cf
ð1Þ
where Gm and cf are matrix shear modulus and fiber volume fraction, respectively. The compressive
strength predicted based on Rosen�s elastic microbuckling model was found to be much greater than the

experimental results. It was suggested that the discrepancy could be attributed to the misalignment of fibers

and the nonlinear behavior of the matrix.

Fiber misalignment is a manufacturing defect created by fiber movements in the matrix during the lay-up

and curing processes. As a result of the presence of fiber misalignments, shear stresses in the matrix may be

produced when the composite is subjected to nominally axial compressions. These shear stresses can lead to

early onset of yielding of the matrix, reducing its support to the fiber and resulting in fiber microbuckling.

Thus, shear stresses induced by fiber misalignments can influence the compressive strength of a fiber
composite. Sun and Jun (1994) extended the microbuckling model by taking into account the effects of fiber

misalignment and matrix nonlinearity and obtained the compressive strength of the composite as
r11c ¼
Gep

m

1� cf
ð2Þ
where Gep
m is the elastic–plastic tangent shear modulus of the matrix. It is noted that the elastic–plastic

tangent shear modulus Gep
m is not a constant but is dependent on the instantaneous state of stress in the

matrix. Based on the 2-D model used by Rosen (1965) and Sun and Jun (1994), in which the composite is

represented by an equivalent plate/matrix periodically layered medium, the right-hand side of Eq. (2) is

recognized as the elastic–plastic tangent modulus of the composite. Thus, the compressive strength of the

composite can be expressed in the form
r11c ¼ Gep
12 ð3Þ
where Gep
12 is the elastic–plastic tangent shear modulus of the composite. Since Gep

12 depends on the current

state of stress in the composite, in general, Eq. (3) must be solved numerically for the compressive strength.
3. Dynamic microbuckling model

Matrix-dominated deformations in polymeric composites are strain rate dependent. Tsai and Sun (2002)

investigated the dynamic response of the S2/8552 glass/epoxy composite and found its mechanical behavior

to be quite sensitive to strain rate. A viscoplastic constitutive model was developed by Tsai and Sun (2002)

for this composite. In the present study, this model is used to derive the strain rate dependent elastic–plastic
tangent shear modulus of the composite.
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3.1. Derivation of rate dependent tangent shear modulus

For small deformations, the total strain rate can be decomposed into elastic and plastic parts as
_eij ¼ _eeij þ _epij ð4Þ
The one-parameter plastic potential function
f ¼ 1
2
r2
22

�
þ 2a66r2

12

�
ð5Þ
proposed by Sun and Chen (1989) for modeling static nonlinear behavior of composites is employed to

develop the rate dependant viscoplasticity model. In Eq. (5), a66 is an orthotropy coefficient, and rij are

stress components referred to the material principal directions. By using the flow rule, the plastic shear

strain rate is expressed as (Tsai and Sun, 2002)
_cp12 ¼ 2a66r12
_k ð6Þ
where _k is a proportionality factor.

Define the effective stress as
�r ¼
ffiffiffiffiffiffi
3f

p
¼

ffiffiffi
3

2

r
r2
22

�
þ 2a66r2

12

�1=2 ð7Þ
Through the equivalence of plastic work rate
_wp ¼ rij _e
p
ij ¼ �r�_ep ¼ 2f _k ð8Þ
the effective plastic strain rate �_ep is defined and the proportionality factor _k in Eq. (6) is obtained as (Tsai

and Sun, 2002)
_k ¼ 3

2

�_ep

�r
¼ 3

2

_�r
Hp�r

ð9Þ
where
Hp ¼
_�r
�_ep

ð10Þ
is the rate dependant plastic modulus.

The viscoplasticity model developed by Tsai and Sun (2002) is expressed in the form
�ep ¼ vð�_epÞmð�rÞn ð11Þ
where v, m and n are material constants which can be determined by performing axial compression tests on

off-axis specimens at different strain rates. The viscoplasticity model for the S2/8552 composite at high

strain rates up to 1000 s�1 was verified with the data obtained from the split Hopkinson pressure bar

(SHPB) tests conducted by Tsai and Sun (2002).

By using Eq. (11) the plastic modulus defined by Eq. (10) becomes (see Thiruppukuzhi and Sun, 2001)
Hp ¼
_�r
�_ep

¼
_�rdt
�_ep dt

¼ dð�rÞ
de

p ¼ 1

nvð�_epÞmð�rÞn�1
ð12Þ
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According to the definition of the effective stress given in Eq. (7), _�r is derived as
Table

Elastic

E1

E2

G12

m12
a66
v
m
n

_�r ¼ 1

�r
3

2
r22 _r22

�
þ 3a66r12 _r12

�
ð13Þ
By substituting Eq. (13) together with Eq. (9) into Eq. (6), the plastic shear strain rate _cp12 is obtained as
_cp12 ¼
9a266r

2
12

Hp�r2
_r12 þ

9a66r12r22

2Hp�r2
_r22 ð14Þ
Substitution of Eq. (14) in Eq. (4) leads to the total shear strain rate
_c12 ¼ _ce12 þ _cp12 ¼
1

Ge
12

 
þ 9a266r

2
12

Hp�r2

!
_r12 þ

9a66r12r22

2Hp�r2
_r22 ð15Þ
where Ge
12 is the elastic shear modulus of the composite. For off-axis specimens with small off-axis angles,

r22 is small as compared with r12 (see Eq. (17) for coordinate transformation of stresses) and, thus, the

second term on the right side of Eq. (15) can be neglected with the result
Gep
12 ¼

_r12

_c12
¼ 1

Ge
12

"
þ 9a266r

2
12

Hp�r2

#�1

ð16Þ
For the S2/8552 glass/epoxy composite, the orthotropy coefficient a66 in the plastic potential function

and other parameters in the viscoplasticity model were determined following the procedure described by

Tsai and Sun (2002). This procedure involves conducting compression tests on off-axis block specimens of

various off-axis angles at three different nominal strain rates 0.0001, 0.01 and 1 s�1. For each strain rate,

stress–strain curves for different off-axis specimens are obtained. Using the one parameter plastic potential

given by Eq. (5) and the associated effective stress and effective plastic strain, these off-axis curves can be

collapsed into a single master curve for each strain rate by selecting an a66 value. These master curves can be

expressed in a power law with a rate dependent amplitude as shown in Eq. (11). The elastic moduli and the
numerical values of the parameters in the viscoplasticity model thus established are summarized in Table 1.

3.2. Dynamic microbuckling model for off-axis specimens

For off-axis composite specimens under compressive loading, the effective total fiber off-axis angle rel-
ative to the loading direction consists of the initial off-axis angle ðhÞ, the initial fiber misalignment angle ð/Þ
and the load-produced in-plane shear strain ðc12Þ. It is noted that during loading, the initial off-axis angle

and initial fiber misalignment remain constant, but the in-plane shear strain is dependent on the applied

load level. Thus, we define the effective off-axis angle ð�hÞ as the sum of the initial off-axis angle ðhÞ and the

initial fiber misalignment angle ð/Þ.
1

moduli and parameters for the viscoplasticity model for S2/8552 glass/epoxy
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Fig. 3. Coordinate transformation for stresses in off-axis composite at the incipient of fiber microbuckling.
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Using the coordinate transformation law, the uniaxial loading stress at the instant of fiber microbuckling

can be decomposed into normal stresses and the in-plane shear stress in reference to the principal material
directions as shown in Fig. 3. We have
r11 ¼ rx cos
2ð�hþ c12Þ

r22 ¼ rx sin
2ð�hþ c12Þ

r12 ¼ �rx sinð�hþ c12Þ cosð�hþ c12Þ
ð17Þ
Based on the result of the bifurcation analysis given by Eq. (3), the compressive strength rxc for off-axis

composites can be written as
rxc cos
2ð�hþ c12Þ ¼ Gep

12 ð18Þ
By substituting the stress components given by Eq. (17) in Eq. (16), the rate-dependent tangent shear

modulus becomes
Gep
12 ¼

1

Ge
12

"
þ 6a266 cos

2ð�hþ c12Þ
Hpðsin2ð�hþ c12Þ þ 2a66 cos2ð�hþ c12ÞÞ

#�1

ð19Þ
Combining Eqs. (18) and (19), the microbuckling strength rxc for off-axis composites can be expressed

explicitly in the form
rxc cos
2ð�hþ c12Þ ¼

1

Ge
12

"
þ 6a266 cos

2ð�hþ c12Þ
Hpðsin2ð�hþ c12Þ þ 2a66 cos2ð�hþ c12ÞÞ

#�1

ð20Þ
It is noted that the induced in-plane shear strain is a function of the applied stress and strain rate.
Moreover, the plastic modulus Hp in Eq. (20) is also nonlinearly related to the applied uniaxial stress rx.

Thus, for a given effective off-axis angle �h and strain history, a numerical iteration is employed to calculate

the microbuckling stress rxc for off-axis composites. The uniaxial stress rx is increased incrementally from 0.

At each stage, the effective stress �r and the plastic modulus Hp are updated using Eqs. (7) and (12),

respectively. At the same time, the current in-plane shear strain is obtained by adding all the previous shear

strain increments calculated using Eq. (15). This incremental procedure continues until Eq. (20) is satisfied.

The applied stress at this step is the microbuckling stress rxc.
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4. Compressive failure tests

In order to verify the dynamic microbuckling model, compressive failure tests were conducted on S2/

8552 glass/epoxy composite specimens at various strain rates. Coupon specimens with end taps and anti-
buckling fixtures are usually employed for quasi-static compression tests. However, in the high strain rate

test using the SHPB, small block specimens were more suitable. In order to have consistency, block

specimens were used for both low strain rate and high strain rate tests.
4.1. Low strain rate tests

For unidirectional composite specimens tested under end loading condition, fiber splitting was found to

be the dominant failure mode. In order to prevent fiber splitting from happening ahead of fiber micro-

buckling, off-axis block specimens were adopted for compressive failure tests. Off-axis block specimens of

0.6 · 0.6 · 1 cm with fiber orientations of 5�, 10� and 15� (against the long direction), respectively, were cut

from a 75-ply unidirectional S2/8552 glass/epoxy laminate using a diamond wheel. The specimens were
lapped on a lapping machine with a 6 lm abrasive slurry to ensure smooth and flat loading surfaces. In

addition, a lubricant was applied to the end surfaces of the specimen to reduce contact friction. A self-

adjusting device as shown in Fig. 4 was used to eliminate potential bending moments and also to ensure the

specimen to be in full contact with the loading surfaces. The applied load and displacement for each test

were recorded using LabVIEW.

Off-axis specimens were tested in compression to failure using the stroke control mode on a servo-

hydraulic MTS machine. Three different constant nominal strain rates of 10�4, 10�2 and 1 s�1 were per-

formed. The nominal strain rate was the stroke rate of the loading frame divided by the original specimen
length. The corresponding true strain rates were measured by using strain gages directly mounted on the

specimens. Fig. 5 shows the nominal strain curve and the true strain curve for a 15� specimen tested at the

nominal strain rate of 0.0001 s�1. It is evident that the true strain is quite different from the nominal strain

and thus the true strain rate is also different from the nominal strain rate. The use of the self-adjusting

device shown in Fig. 4 in the compression test could have contributed to this discrepancy. In this study, the

true strain curve history was adopted for the calculation of the strain rate. Since the true strain rate is not

constant during the loading process, the average value was employed in the analysis with the microbuckling

model.
Specimen

Applied displacement

Hardened steel

Self-adjusting
device

Fig. 4. Schematic of the compression test.



Fig. 5. Strain histories obtained from stroke and strain gage for 15� off-axis specimens tested at nominal strain rate 0.0001 s�1.
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Fig. 6. Schematic of the split Hopkinson pressure bar for high strain rate compression test.
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4.2. High strain rate tests

High strain rate compression tests were conducted using a split Hopkinson pressure bar (SHPB). Since

the specimen is sandwiched between the incident bar and the transmission bar, shear-extension coupling

occurs in the off-axis specimen under axial loading. This behavior combined with the bar-specimen inter-

facial contact friction could cause an inhomogeneous deformation in the specimen, which deviates from the
conventional Hopkinson bar assumption. In order to reduce this contact friction, all specimens were lapped

and lubricated as recommended by Ninan et al. (2001). A two-gage configuration of a split Hopkinson
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pressure bar is shown in Fig. 6, where gage A measures both the incident and reflected pulses in the incident
bar, while gage Bmeasures the transmitted pulse. Fig. 7 shows the typical signatures (voltages) picked up by

strain gages A and B during an SHPB test on the 10� specimen. Using the Hopkinson bar theory, the

contact stress P1 between the incident bar and the specimen, and P2, the contact stress between the specimen

and the transmission bar, can be extracted from the recorded pulse data (Graff, 1975). Fig. 8 shows contact

stresses P1 and P2 for the 10� specimen in the SHPB test. It can be seen that the peak values of the P1 and P2
curves are nearly the same. The average of the peak values was taken as the failure stress of the specimen in

the SHPB test.

Conventionally, the strain history of the specimen during loading is calculated using a well known
Hopkinson bar formula with expressions of displacements at the ends of the bars derived from the strain

responses recorded at gages A and B (Graff, 1975). In the present study, the strain response of the specimen

was also measured using strain gages directly mounted on the specimen. Fig. 9 shows the comparison of the

strain histories for the 10� specimen obtained using the Hopkinson bar formula and the strain gage on the

specimen, respectively. It is evident that the strain history calculated based on the Hopkinson bar theory

deviates from that directly measured on the specimen. Consequently, the respective strain rates obtained

were also different. In this study, the strain rate measured directly from the specimen was used. The average

strain rates for the 5� specimen and 10 � specimen were about 900 and 400 s�1, respectively.
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5. Model prediction

In the failure prediction analysis using the microbuckling model, Eq. (20) must be solved numerically.

Specifically, the elastic–plastic modulus Hp and in-plane shear strain c12 histories during loading are needed
in Eq. (20). Theoretically, these quantities can be calculated from the measured load history using the

viscoplasticity model with incremental procedures. In this study, we employed a simpler but approximate

procedure based in part on the measured strain history of the specimen. As indicated in Fig. 5, the actual

strain rate in the specimen was not the same as the nominal strain rate and was not constant during loading.

In this study, the strain measured with strain gages was used, from which the plastic strain was extracted by

subtracting from it the elastic strain. The state of stress in off-axis composite specimens under uniaxial

loading is in a state of proportional loading and, thus, the effective plastic strain rate �_ep is related to the

loading plastic strain rate as (Thiruppukuzhi and Sun, 2001).
Table

The av

Low

Nom

Nom

Nom

Hig

Stra

Stra
�_ep ¼ _epx
hð�hÞ

ð21Þ
where
hð�hÞ ¼
ffiffi
3
2

q
sin4 �h
h

þ 2a66 sin
2 �h cos2 �h

i1=2
ð22Þ
Theoretically, the induced shear strain should be added to the off-axis angle term �h in Eq. (21). In view of the

fact that a variation in plastic strain rate does not affect the strength unless it is more than an order of

magnitude, only the fiber off-axis angle and misalignment angle are included in �h. Moreover, to further

simplify the calculation, the average plastic strain rate for each test is used in calculating the plastic modulus

Hp using Eq. (12). Table 2 lists the average strain rates based on the strain histories measured with strain

gages. For each off-axis specimen, the plastic strain history is obtained by subtracting the elastic strain from

the total strain response history. Subsequently, the plastic strain rate history and the average plastic strain
rate are obtained. The corresponding average effective plastic strain rate is obtained using Eq. (21).

Once the average effective plastic strain rate is adopted, the evaluation of Eq. (20) only requires the input

of the value of c12 corresponding to the axial loading stress rx. The incremental solution procedure is

performed starting with rx ¼ 0:0. The shear strain increment for each load increment can be calculated

from Eq. (15) in which Hp is determined with the average effective plastic strain rate, and the stress com-

ponents are obtained from the stress transformation law given by Eq. (17) in which c12 is the value of the

previous step. The compressive strength rxc is obtained when Eq. (20) is satisfied.
6. Experimental results and comparison

All failed specimens from compression tests were examined using a microscope to observe the failure

mechanism. For 5� and 10� specimens, fiber microbuckling was found to be the dominant failure mecha-
2

erage stain rate and the corresponding nominal strain rate in compressive failure tests

strain rate test Average strain rate

inal strain rate 1.0E)4 s�1 5.2E)5 s�1

inal strain rate 1.0E)2 s�1 4.2E)3 s�1

inal strain rate 1 s�1 0.25 s�1

h strain rate test Average strain rate

in rate from formula 500 s�1 400 s�1

in rate from formula 1000 s�1 900 s�1



Fig. 10. Microbuckling failure mechanism in 5� and 10� off-axis specimens.

Fig. 11. Comparison of experimental and predicted microbuckling failure strengths for 5�, 10� and 15� S2/8552 off-axis specimens.
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nism within the range of tested strain rates. For the 15� specimen, failure was dominated by fiber micro-
buckling at strain rates below 0.01 s�1; and was dominated by matrix shear failure at higher strain rates.

This phenomenon indicates that the fiber microbuckling load and shear failure load in the 15� specimen

must be very close. At lower strain rates the shear stiffness is lower than that at high strain rates. Fig. 10

shows the failure mechanism of fiber microbuckling in the 5� and 10� off-axis specimens tested at the

nominal strain rate of 10�4 s�1.

In a recent study by Tsai and Sun (2003), it was found that the 30� and 45� S2/8552 off-axis specimens all

failed in in-plane shear mode for both low and high strain rates. This result is expected because for these

large off-axis angles, the in-plane shear stress component induced by axial compression is significant relative
to the shear strength of the composite, making it possible for shear failure to take place before fiber mi-

crobuckling.

The experimental failure stresses rxc for off-axis specimens at different strain rates are shown in Fig. 11.

Only the data associated with microbuckling are included in the figure. The model predictions with a 3�
initial fiber misalignment are also presented in the figure for comparison. The 3� initial fiber misalignment

was chosen to fit the experimental data. This value is within the experimental measurements of fiber

misalignment of composites (Yurgartis, 1987). It is evident that the microbuckling stress is significantly
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affected by strain rate. Comparison of model predictions with the test data indicates that the present dy-
namic microbuckling model is capable of predicting the compressive failure stress of the composite for

strain rates (up to 900 s�1) considered in this study.
7. Effect of shear stress

Owing to the extension-shear coupling in off-axis composite specimens, fiber microbuckling in these

specimens takes place in the presence of shear stresses. Thus, the effect of shear stress on compressive

strength in fiber composites can be assessed from the compression data for the off-axis composite speci-

mens. Specifically, the critical axial stress r11c (the compressive longitudinal strength of the composite) and

the corresponding shear stress r12 were obtained from the failure stress rxc for off-axis specimens with the
aid of Eq. (17). These stress components are the apparent stresses without considering the fiber mis-

alignment and shear strain effect. For this purpose, only the initial off-axis angle was considered in the

coordinate transformation using Eq. (17).

Fig. 12 shows the experimental results and model predictions (with a 3� initial fiber misalignment) of

compressive strength versus in-plane shear stress r12 for different strain rates. The model predictions are

also included for comparison. It is clear that the presence of shear stress can greatly alter the longitudinal

compressive strength of the composite. More specifically, the compressive strength of the composite de-

creases as the in-plane shear stress increases. This effect can be attributed to the fact the presence of the in-
plane shear stress can reduce the value of the elastic–plastic shear modulus. Thus, the compressive strength

of a composite subjected to combined compression and shear loads must be evaluated by taking into ac-

count the effect of shear stress. A similar result was observed by Jelf and Fleck (1994) who performed

torsion–compression tests on unidirectional composite tubes.
8. Comparison of microbuckling model and kink band model

There are two major models developed for prediction of compressive strengths of polymeric composites,

namely, the microbuckling model and the kink band model. The two models were derived based on dif-

ferent assumptions and have different functional forms for the compressive longitudinal strength (Sun and
Tsai, 2001). In this section, a comparison of the two models is presented. Table 3 shows the compressive



Table 3

Comparison of compressive strengths of S2/8552 off-axis specimens predicted using microbuckling model and kink band model

Off-axis angle 5� 10�

Experimental data (MPa) 535 404

Kink band model (MPa) 554 395

Microbuckling model (MPa) 550 403
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failure predictions for 5� and 10� off-axis S2/8552 glass/epoxy composite specimens at a nominal strain rate

of 10�4 s�1 using the present microbuckling model with a 3� initial fiber misalignment and the kink band

model by Budiansky and Fleck (1993) with a 2� initial fiber misalignment. The comparison indicates that

the compressive strengths for the off-axis specimens obtained from the two models are basically the same

and agree with the experimental data well.

It is noted that in the kink band model by Budiansky and Fleck (1993), only the shear stress component is
taken into account and the effect of other stress components are neglected. This is acceptable for off-axis

specimens with small off-axis angles in which the transverse normal stress r22 is small. Slaughter et al. (1993)

extended the kink band model to include the combined stress effect on plasticity. By considering the con-

tinuity of tractions and displacement on the boundary of the band and assuming a homogeneous defor-

mation inside and outside the kind band, implicit equations for compressive strength were derived. For

strain hardening composite materials with a nonzero kink band angle b, the functional form for compressive

strength is quite complicated. It appears that the kink band model is more cumbersome to use than the

microbuckling model in predicting compressive failure of composites under a general state of stress.
9. Conclusions

In this study, it has been shown that, by including fiber misalignments and matrix nonlinear behavior,

the microbuckling model can be extended to predict compressive strengths of polymeric composites under

low and high strain rate loadings. The viscoplasticity model developed by Tsai and Sun (2002) for com-

posites can be incorporated in the microbuckling model to account for the strain rate effect on compressive

strength. Experimental results from off-axis compression tests on the S2/8552 glass/epoxy composite

indicate that fiber microbuckling failure mode and, thus, the compressive longitudinal strength of the
composite can be obtained from off-axis specimens with small (5–15�) off-axis angles. From model pre-

dictions as well as experimental results it is concluded that the compressive strength of polymeric com-

posites is rate-sensitive and that the presence of in-plane shear stress can appreciably lower the compressive

longitudinal strength.

It is also concluded that, although the initial concepts of the two models are different, the microbuckling

model and the kink band model predict basically the same compressive strength of off-axis composite

specimens with small off-axis angles.
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